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The idea behind

 Satellites monitoring the oceans in the visible range of

electromagnetic spectrum

 The primary goal is to extract concentrations of marine phytoplankton

Phyto (φυτό) +plankton (πλαμκτόμ)
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Satellite Ocean Color
 A satellite observes both oceans and

the atmosphere

 The atmosphere is approximately 90%

of the measured signal in the visible

and must be accurately modeled and

removed

 A 1% error atmospheric correction will

result in a 10% error in water-leaving

radiances
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Derived bio-optical 
products, e.g. chl-a

Top-of-the-atmosphere 
calibrated radiances

Water-leaving radiances

geolocation and calibration

atmospheric correction

bio-optical algorithms

Ocean Color Retrieval

Level-0 ( L0 )

Level-1B ( L1B )

Level-2 ( L2 )

Level-2 ( L2 )
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 Shettle and Fenn (1979) introduced a set of basic aerosol models

Continental (rural and urban)

Maritime (oceanic and continental)

 d’ Almeida et al. (1991) provide a more comprehensive classification

Maritime (clean, mineral, polluted)

 Ocean color implementation, Gordon and Wang (1994) 

tropospheric, coastal, maritime and oceanic

 Antoine and Morel (1999) include operational models for desert dust

Up to now…
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 New generation of aerosol models, Ahmad et al. (2010)

bimodal lognormal distribution

Eight relative humidity values (30 – 95 %) 

Varying fine mode fraction (from 0 to 1)

Same spectral dependence of SSA as observed in AERONET

Up to now…
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Develop a new aerosol model
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Comprehensive, quantitative

and statistically significant data

base



Develop a new aerosol model

 Synergy of EARLINET and AERONET datasets for VRAME
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 Lidar data already finilized are only used which are included in the 

ESA-CALIPSO database



Develop a new aerosol model

 Synergy of AERONET and EARLINET datasets for VRAME

 The first and currently primary application of the new aerosol model 

will be the atmospheric correction of MERIS data over the ocean

WAVELENGTHs (MERIS):

443, 510, 560, 709, 778, 865 nm 

VERTICAL RESOLVED:

Extinction  Coefficient

Single Scattering Albedo

Phase Function

Assymetry Parameter

AEROSOL TYPES:

Marine polluted

European anthropogenic pollution

Continental background aerosols

Saharan dust

Volcanic aerosols in the stratosphere

Aged and young forest fire smoke
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VRAME

1.

Development of the non maritime aerosol database

Identification of aerosol layers

Aerosol – type analysis 

Profiles of optical and microphysical properties

Extinction  Coefficient

Single Scattering Albedo

Phase Function

Assymetry Parameter

As input to RT model
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VRAME

2.

LUT generation

RT calculations for individual and for the generalized 

EARLINET/AERONET datasets 

The results of these calculations will be the radiances on TOA at 

different wavelengths and viewing geometries

1.

Development of the non maritime aerosol database
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VRAME

1.

Development of the non maritime aerosol database

2.

LUT generation

3.

Sensitivity Study

Is it possible to retrieve the aerosol type from TOA radiances?

measurable radiances of a satellite sensor show significant 

differences in the presence of different aerosol types

How profitable is the knowledge of the aerosol type?

climatological mean aerosol data/specific aerosol type

How profitable is the knowledge of the profile information?

column average aerosol properties / vertical information
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VRAME

1.

Development of the non maritime aerosol database

2.

LUT generation

3.

Sensitivity Study

4.

Aerosol distinction algorithms development

Distinguish between different aerosol types by the ratio of 

radiances measured in different MERIS channel
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VRAME

1.

Development of the non maritime aerosol database

2.

LUT generation

3.

Sensitivity Study

4.

Aerosol distinction algorithms development

5.

Validation

Include in-situ measurements of water leaving reflectance 

spectra and demonstrate if an improvement of the atmospheric 

correction with the new aerosol model can be achieved 
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VRAME

1.

Development of the non maritime aerosol database

2.

LUT generation

3.

Sensitivity Study

4.

Aerosol distinction algorithms development

5.

Validation
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EARLINET and AERONET for VRAME

Super-site stations

 Cabauw, The Netherlands (2008-2009)

 Leipzig, Germany (2001-2009)

 Potenza, Italy (2006-2009)

 Athens, Greece (2008-2009)
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EARLINET and AERONET for VRAME

Super-sites

 Cabauw, The Netherlands (2008-2009)

 Leipzig, Germany (2001-2009)

 Potenza, Italy (2006-2009)

 Athens, Greece (2008-2009)

High performance

 Thessaloniki, Greece (2003-2009)

 Potenza, Italy (2004-2006)

 Barcelona, Spain (2006-2009)

 Granada, Spain (2006-2009)

 Hamburg, Germany (2006-2009)

 Minsk, Belarus (2006-2009)
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EARLINET and AERONET for VRAME

Super-sites

 Cabauw, The Netherlands (2008-2009)

 Leipzig, Germany (2001-2009)

 Potenza, Italy (2006-2009)

 Athens, Greece (2008-2009)

High performance

 Thessaloniki, Greece (2003-2009)

 Potenza, Italy (2004-2006)

 Barcelona, Spain (2006-2009)

 Granada, Spain (2006-2009)

 Hamburg, Germany (2006-2009)

 Minsk, Belarus (2006-2009)

Basic stations

 Belsk, Poland (2006-2009)

 Lecce, Italy (2006-2009)
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EARLINET and AERONET for VRAME
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22 July 2004: Smoke / Anthropogenic

Super-sites

 Cabauw, The Netherlands

 Leipzig, Germany

 Potenza, Italy

 Athens, Greece

10 June 2010:  Anthropogenic

High performance

 Thessaloniki, Greece

 Potenza, Italy

 Barcelona, Spain

 Granada, Spain

 Hamburg, Germany

 Minsk, Belarus

Leipzig as only bp at 532 nm Basic stations

 Belsk, Poland

 Lecce, Italy



Leipzig, 22 July 2004

Time (UTC)
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Consistency of two datasets
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Aerosol Type, 22 July 2004
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The optical profiles, 22 July 2004
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Extinction Coefficient

WAVELENGTHs (MERIS channels):

443, 510, 560, 709, 778, 865 nm 

443,510 and 560 nm

Aerosol Extinction Coefficient at 532 nm [LIDAR]

Ångström exponent between 355/532 nm [LIDAR]

709,778 and 865 nm

Aerosol Extinction Coefficient at 532 nm [LIDAR]

Ångström exponent between 500/870 nm [CIMEL]
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The optical profiles, 22 July 2004
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Time (UTC)
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Single Scattering Albedo
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With inversion of optical properties 

[3 backscatters and 2 extinctions] 

we retrieve the profile of SSA for 

355, 532 and 1064 nm

Linear approximation to estimate 

the desired wavelengths

WAVELENGTHs (MERIS channels):

443, 510, 560, 709, 778, 865 nm 
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Phase Function and Asymmetry Parameter
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Refractive index and size distribution

from inversion algorithm are used in a 

Mie code to find the phase function in 

several wavelengths for each layer

Then the asymmetry parameter is 

being calculated:



The results: Input for RT model
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Thessaloniki, 10 June 2010 
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The optical profiles
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Following Balis et al. (2009) the missing information in lidar

profiles are approximated with the synergy of sunphotometer data:

In this way the inversion algorithim is being applied and the

sequence of the previous steps could be applied

Additional assumptions to reach MWL stations

CIMEL



Consistency check
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Leipzig, 22 July 2004 as basic station
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Apply the information of backscatter contribution to the total

backscatter into the total aerosol optical depth to retrieve extinction

coefficients at several layers and several wavelengths

Assume same microphysical properties though column



Summary

 A 1% error in atmospheric correction will result in a 10% error in

water-leaving radiances

• The main objective of VRAME is to develop a dynamic, 

vertically resolved aerosol model to be delivered to the 

sattelite community for accurate atmospheric correction.

 With the synergy of AERONET and EARLINET data a dynamic

aerosol model will be developed

 Different assumptions need to be introduced for each group of

dataset
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Thank you for your attention


