GALION The GAW Aerosol Lidar Observation Network

Raymond Hoff Gelsomina Pappalardo Jens Bösenberg

GALION Intro 2nd Workshop

September 20, 2010

Background

2006 GAW Science Advisory Group called for a workshop on the need for a global lidar network

A workshop was convened in Hamburg in March 2007 under WMO AREP auspices

The workshop report was published by WMO GAW

GAW Aerosol Lidar Observation Network (GALION)

GAW Report No. 178

Plan for the implementation of the GAW Aerosol Lidar Observation Network GALION

ftp://ftp.wmo.int/Documents /PublicWeb/arep/gaw/gaw1 78-galion-27-Oct.pdf

Authors of Report

□ Lead Authors:

¤ Jens Bösenberg, Max-Planck-Institut für Meteorologie, Hamburg

Raymond Hoff, University of Maryland, Baltimore County

¤ Contributing Authors

Albert Ansmann, Juan Carlos Antuna, Yuri Arshinov, Arnoud Apituley, Edwin Eloranta, Volker Freudenthaler, Mike Hardesty, Stefan Kinne, Detlef Müller, Michael Schulz, Nobuo Sugimoto, Judd Welton, David Whiteman

First WMO Experts Meeting on the implementation of a GAW Aerosol Lidar Observation Network: GALION

March 27-29, 2007 Max-Planck-Institut für Meteorologie Hamurg, Germany Bundesstraße 53 D-20146 Hamburg

The following program establishes links to the material presented at the meeting. This material is protected by copyright which remains with the authors of the individual contributions.

Program Tuesday, March 27, 2007

Welcome 9:00 Welcome and technical announcements

Introduction

- 9:15 Slobodan Nickovic: WMO/GAW and aerosol
- 9:45 coffee-break

Existing lidar networks I (goals, equipment, stations, operation, data)

- 10:15 Nobuo Sugimoto: AD-Net
- 10:30 Juan Carlos Antuna: ALINE
- 10:45 Anatoli Chaikovsky: CIS-LINET
- 11:00 Jens Bösenberg: EARLINET
- 11:15 Judd Welton: MPLNET
- 11:30 short break

Existing lidar networks II (goals, equipment, stations, operation, data)

- 11:45 Sophie Godin-Beekmann: NDACC
- 12:00 Raymond Hoff: REALM
- 12:15 Jun Zhou: Aerosol Lidar Observation Network perspectives in China
- 12:30 Dave Winker: Groundtruth for CALIOP
- 12:50 Cathrine Lund Myhre: ENAN: The European Networks of Aerosol Networks
- 13:00 lunch-break

Working group presentations I (overview issues, recommendations)

- 14:00 Michael Schulz: WG5 user needs with respect to a GALION network
- 14:30 Albert Ansmann: WG2 methodology
- 15:00 Arnoud Apituley: WG1 technologies
- 15:30 coffee-break

Working group presentations II (overview issues, recommendations)

- 16:00 Nobuo Sugimoto: WG4 Coordination with satellite observations
- 16:15 Teruyuki Nakajima: WG4 Aerosol and Cloud Environmental Studies With Combined Active and Passive Sensors
- 16:30 J.Bösenberg/R.Hoff: WG3 Networking

http://lidar.dkrz.de/galion/

First WMO Experts Meeting on the implementation of the GAW Aerosol Lidar Observation Network: GALION

March 27-29, 2007 Hamburg, Germany (>50 participants)

Represented Networks

¤ SPARC/NDIAC EARLINET AD-NET **X**ALINE **¤ REALM ¤** CIS-LINET **¤** MPL-NET

Conceptually GALION fits GEOSS since it is a Network of Networks and GAW is GEOSS

Objectives for GALION Supports Task 7.84 of GAW IP

- I. Detection of long-term man-made trends in the concentration of greenhouse gases and aerosols
 I. Detection of long-term man-made trends in the concentration of greenhouse gases and aerosols
 I. Detection of long-term man-made trends in the concentration of greenhouse gases and aerosols
- ∡ 3. Better quantification of pollution sources and their atmospheric pathways
- ¥ 4. Reliable global concentration fields
- **¤** 5. Better prediction of UV intensities
- 5. Direct observation of plumes from major events
 7. Improved regional forecasts of both weather and air quality

Measurements possible

Observational configuration	Bsc. cf.	Ext cf.	Lidar ratio	Opt. depth	Ang. exp.	Microphys
1-λ standard backscatter lidar	β(z)					
1-λ standard backscatter lidar + Sun photometer	β(z),	α(z) estimate	LR(col)	AOD(λ)	Å _ð (col)	MPP(col)
m-λ standard backscatter lidar	β(λ,z)				Å _β (z)	
m-λ standard backscatter lidar + Sun photometer	β(λ,z)	$\alpha(\lambda,z)$ estimate	LR(λ,col)	AOD(λ)	$\dot{A}_{\beta}(z),$ $\dot{A}_{\delta}(col)$	MPP(col)
1-λ Raman lidar/HSRL	β(z)	α(z)	LR(z)	AOD		
1-λ Raman lidar/HSRL + Sun photometer	β(z),	α(z)	LR(z)	AOD(λ)	Å _δ (col)	MPP(col)
m-λ Raman lidar	β(λ,z)	α(λ,z)	LR(λ,z)	AOD(λ)		MPP(z)
m-λ Raman lidar + Sun photometer	β(λ,z)	α(λ,z)	LR(λ,z)	AOD(λ)	$\dot{A}_{\beta}(z),$ $\dot{A}_{\alpha}(z),$ $\dot{A}_{\delta}(col)$	MPP(z), MPP(col)

Which type of lidar is necessary and sufficient to obtain the most important aerosol parameters is described in Table 3.2-2, ordered according to increasing instrument and retrieval complexity. Tables 3.2-1 and 3.2-2 form the basis for the decisions to be made for the selection of instruments for the different purposes of the network operation, from a design perspective. In practicality, level of sophistication in the existing networks and instrument availability will govern the initial network configuration.

Aerosol Properties

Table 3.1-2: Aerosol properties that can be derived from lidar observations. Only the <u>simpliest</u> lidar type that is needed to provide the product is listed. Depolarization channels (DEPOL) are required to identify desert dust.

Parameter (product)	Basic lidar type	
Range corrected signal (color plots of aerosol and cloud distributions)	BL	
Attenuated backscatter coefficient (calibrated range-corrected signal)	BL	
PBL depth	BL	
Aerosol backscatter coefficient	BL	
Aerosol type discrimination (dust, anthropogenic)	BL+DL	
Aerosol extinction coefficient (estimate), optical depth, column lidar	BL+SPM	
ratio		
Aerosol extinction coefficient, optical depth, lidar ratio	RL or HSRL	
Ångström exponent (backscatter-related)	MBL	
Ångström exponent (extinction-related)	MRL	
Aerosol type determination (dust, maritime, fire smoke, urban haze)	MRL+DL	
Aerosol microphysical properties (volume and surface conc., refractive	MRL	
index)		
Single scattering albedo (aerosol)	MRL	

Implementation

X Steering Group (GAW - network heads) Technical Working Initially, follow the Operational scher
 (Mon-Thurs) [≍] Data qua Strawperson suggestion: ¤ QA/QC **¤ Capacity B** Should be able to retrieve Integration with AOD/Satellite Meas.

Acknowledgements

- WMO GAW Science Advisory Group on Aerosols
 - Contributors to the draft report (and host MPI-Hamburg)
- And for the 2nd Workshop Support:
 - Hal Maring, Radiation Sciences Program, NASA HQ
 Lawrence Friedl, Applied Sciences Program, NASA HQ
 Judd Welton, NASA GSFC
 - UMBC Goddard Earth Sciences and Technology CenterIMAA-CNR
 - Atmospheric Research and Environment Program (AREP) WMO