

Optimisation of Instruments

Arnoud Apituley Volker Freudenthaler Adolfo Comeron

Outline

- Goals
- Methodology and Tools
- Progress and Status
- Conclusions

Goals

- Improving the EARLINET installed base of lidars
 - 1. Performance
 - 2. Homogeneity
 - 3. Operationality
- Selecting optimum technical solutions for instrumental problems
- Recommendations for implementation across the network
- Facilitate expansion of the network

Performance

• Which parameters should be optimised?

Table 1: Measurement characteristics as required for the main application areas. Backscatter lidar (BL), Raman lidar (RL), depolarization lidar (DL), and high spectral resolution lidar (HSRL). These methods can be applied either at one or at multiple wavelengths (MBL, MRL). α = extinction, β = backscatter, δ = depolarization, S_a = lidar ratio, MPP = microphysical properties.

Application area	Parameters required	Instrument type	Operation required	Number of stations
1.a Global climatology	α, δ, (β, S _a)	RL	fixed schedule, 3/week	20?
1.b Model evaluation	α, δ, (β, S _a , MPP)	MRL	fixed schedule + diurnal cycles	
1.c Transport and tracers	β, (α, δ, ΜΡΡ)	BL	fixed schedule + on alert	50
1.d Radiation	α, β, (δ)	RL	random	20
2.a Air quality assessment	α, δ, β, ΜΡΡ	RL	fixed schedule	50+
2.b Air quality forecast	В	BL	quasi-continuous	??
3. Plumes from special events	β, (α, δ, ΜΡΡ)	BL	on alert	50
4.a Ground truth	α, δ, β, S _a	MRL	TBD	20
4.b Complementary information	α, δ, β, S _a	MRL	fixed schedule	20

2nd GALION WS

WMO, Geneva

4

RAMEWORK PROGRAMME EARLINET

Performance

- Which lidar configurations?
- Table 3:Aerosol properties that can be derived from lidar observations. Only the simpliest
lidar type that is needed to provide the product is listed. Depolarization channels (DL)
are required to identify desert dust.

Parameter (product)	Basic lidar type		
Range corrected signal (colour plots of aerosol and cloud distributions)	BL		
Attenuated backscatter coefficient (calibrated range-corrected signal)	BL		
PBL depth	BL		
Aerosol backscatter coefficient	BL+SPM		
Aerosol type discrimination (dust, anthropogenic)	BL+DL		
Aerosol extinction coefficient (estimate), optical depth, column lidar ratio	BL+SPM		
Aerosol extinction coefficient, optical depth, lidar ratio	RL or HSRL		
Ångström exponent (backscatter-related)	MBL		
Ångström exponent (extinction-related)	MRL		
Aerosol type determination (dust, maritime, fire smoke, urban haze)	MRL+DL		
Aerosol microphysical properties (volume and surface conc., refractive index)	MRL		
Single scattering albedo (aerosol)	MRL		

2nd GALION W\$

WMO, Geneva

GAW report 178, WMO/TD-No. 1443

Homogeneity?

Multi-wavelength Raman (3+2)
Raman
Backscatter

20 Sept. 2010

Operationality

- Increase level of automation
 - e.g. measurement start-up procedures
 - Full autonomous operation
- Decrease need for operator controlled measurements

2nd GALION W\$

WMO, Geneva

-e.g. safety and control

Expected Results

- Enhanced homogeneity of performance over the network
 - Quantitative data products
- Better coverage of vertical range
 - Including the boundary layer
- Increased temporal coverage
 - Improved Raman daytime performance
 - Increased level of automation (capture events)
- Facilitate expansion of the network
- Possible: spin-off to SME for production of standardised components
- •

Expected Results

- Enhanced homogeneity of performance over the network ٠
 - Quantitative data products
- Better coverage of vertical range
 - Including the boundary layer
- Increased temporal coverage
 - Improved Raman daytime performance
 - Increased level of automation (capture events)
- Facilitate expansion of the network
- Possible: spin-off to SME for production of standardised • components

2nd GALION W\$

WMO, Geneva

- Expansion of deliverable data products
 - Cloud products, ash, faster data delivery

Methodology and Tools

- Handbook of Instruments
 - Extensive set of system parameters
 - Exploitation of handbook data
- Repository of techniques
 - Solutions for technical problems
- Analysis tools
 - Optical configuration (ray-tracing)
 - Electronics recommendations and testing procedures

Handbook of Instruments

2nd GALION W\$

WMO, Geneva

- Detailed description of each ٠ individual station
- Generic format to allow wide ٠ variety of designs
- Blocks of information •
 - Station information (location, name, etc.)
 - Emitter description (wavelengths, control systems)
 - **Optical receiver**
 - Wavelength separation
 - Detectors
 - Data acquisition
 - Ancillary station information (nearest sonde, sunphotometer)

Handbook Example

• 1-lambda Backscatter lidar

Handbook Example

Multi-wavelength Raman Lidar

WMO, Geneva

14

Handbook Updating

- Spreadsheet
 - Tedious updating process
 - Difficult to couple to profiles in database

- Database with admin-access via web
 - Easier to maintain
 - System configuration traceable to specific date
 - Automatic access (data processing purposes)
 - Public interface for general overview

Handbook Updating

Earlinet adminpages										
SF	Station	Emitter	Receiver							
AN	<pre>#call-sign #lidar_system_name #updated #description #name #location</pre>		BH 2010-03-25 14:07 Bilthoven - Rijksinst Caeli Bilthoven, NL							
	#1at		52.12	←	gn _updated	_receiver #waveleng	th scattering_mechani	ism wavelength_separati	on separation_passband_bandwidth	separation_transmiss
	#10n #alt		5	T 🖉 🗙 SF	2010-03-29 10:59:21	Telescope 510.6 nm 1	Elastic			
	#environment		urban	🗖 🥒 🗙 SF	2010-03-29 10:59:21	Telescope 1064 nm	Elastic	DBS		
	#transportable		no	🗖 🖋 🗙 SF	2010-03-29 10:59:21	J Telescope 532 nm 3	Elastic	DBS		
				🗖 🥒 🗙 SF	2010-03-29 10:59:21	Telescope 607 nm 3 (devel)	Vibr.Raman N2	DBS		
				🗆 🎤 🗙 вн	2010-03-25 14:07:33	Telescope 1064 nm 1	Elastic	DBS		
				🗆 🥒 🗙 ВН	2010-03-25 14:07:33	Telescope 387 nm 1	vibr.Raman N2	DBS		
				🗖 🎤 🗙 ВН	2010-03-25 14:07:33	Telescope 355 nm 1	Elastic	DBS		
				🗖 🥕 🗙 ВН	2010-03-25 14:07:33	Telescope 607 nm 1	vibr.Raman N2	DBS		
				🗖 🎤 🗙 ВН	2010-03-25 14:07:33	Telescope 407 nm 1	vibr.Raman WV	DBS		
				🗖 🥒 🗙 ВН	2010-03-25 14:07:33	Telescope 532 nm 1	Elastic	DBS		
				🗖 🎤 🗙 ВН	2010-03-25 14:07:33	Telescope 532 nm 2	Elastic parallel	n.a.		
				🗖 🎤 🗙 AN	2007-01-15 00:00:00	Telescope 355 1	Elastic	DBS	0.2	
				n 🖉 🗙 AN	2007-01-15 00:00:00	Telescope 387 1	Vibr.Raman N2	DBS	0.2	
				🗆 🥕 🗙 AN	2007-01-15 00:00:00	Telescope 408 1	Vibr.Raman H2O	DBS	0.2	
				🗖 🎤 🗙 AN	2007-01-15 00:00:00	Telescope 532 1	Elastic parallel	DBS	0.35	
				🗆 🥒 🗙 AN	2007-01-15 00:00:00	Telescope 608 1	Vibr.Raman N2	DBS	0.2	
				🗆 🥕 🗙 AN	2007-01-15 00:00:00	Telescope 660 1	Vibr.Raman H2O	DBS	10	
				🗖 🥒 🗙 AN	2007-01-15 00:00:00	Telescope 1064	Elastic	DBS	0.2	

2nd GALION W\$

WMO, Geneva

H FRAMEWORK

16

EARLINET

http://cerberus.rivm.nl/earlinet/earlinet.php

Handbook Public View

http://cerberus.rivm.nl/earlinet/index_new.php

Handbook Public View

http://cerberus.rivm.nl/earlinet/index_new.php

20 Sept. 2010

Handbook Public View

http://cerberus.rivm.nl/earlinet/index_new.php

Analysis Tools

2nd GALION W\$

WMO, Geneva

Optics

- Calculate validity of configuration based on Handbook data
- Raytracing individual instruments

Repository of Techniques and Solutions

- Techniques are presented and discussed during workshops
- Documentation materials made accessible

System Integration and Automation

2nd GALION W\$

WMO, Geneva

- Recommendations to put sub systems together
 - Serviceable (modular, replaceable, upgradable)
 - Instrument control software integration
 - Electrical connections to avoid problems
 - Computer Interfacing
 - Remote control

22

Commercial Systems

- Commercially available systems are available
 - In use in Granada, Leipzig, Evora, Bucharest, Ispra, Palaiseau
 - Instruments have to pass through network QA/QC procedures before data can be accepted in the database
- Common parts
 - Interact with suppliers for common specifications and custom configurations

Progress and Status

2nd GALION W\$

WMO, Geneva

 Instrument installed base development since 2000

Station	Country	System name	Lat	Lon	2000	2006	2010
Abastumani	GE		41.75 N	42.82 E	-	-	-
Aberystwyth	GB		52.4 N	4.06 W	1b+1a	-	-
Andenes	NO	ALOMAR Troposphere Lidar	69.278 N	16.008 E	-	3b+2a	3b+2a
Athens	GR	EOLE	37.9716 N	23.7875 E	1b	3b+2a	3b+2a
Barcelona	ES	UPCLidar	41.393 N	2.120 E	1b	2b	2b+1a
Belsk	PO		51.5 N	20.47 E	3b	2b	3b
Bucharest	RO	LISA RALI	44.348 N	26.029 E	-	2b -	- 3b+2a
Cabauw	NL	RBL Caeli	51.97 N	4.93 E	-	1b -	- 3b+2a
Cork	IR				-	-	-
Evora	PT		38,568 N	7.912 W	-	-	3b+2a
Garmisch-Partenkirchen	DE		47.476 N	11.063 E	3h	-	-
	22	NDSC lidar		11.000 E	-	2h	2b
		HSRI			-	2b+1a	2b+1a
Granada	ES	Raymetrics LR321 - D400	37.164 N	3.605 W	-	3b+1a	3b+2a
Hamburg	DE	ARI 2	53.568 N	9.973 F	1b+1a	3b	3b+1a+2r
Ispra	IT	CIME	45.811 N	8.621 E	-	1b	1b
Kühlungsborn	DE	GINEE	54.1167 N	11.7667E	3b+2a	-	-
l 'Acquila	IT		42.344 N	13.327 F	1b+1a	1b+1a	1b+1a
Lausanne	CH	EPEL-MeteoSwiss	46.5481 N	7.9839 F	3b+1a	2h+2a	-
Lecce	IT	Unil e	40.33 N	18.10 F	1b+1a	1b+1a	1b+1a
Leipzia	DE	Martha	51.35 N	12.43 E	3b+2a+2r	3b+2a+2r	3b+2a+2r
20192.9	22	Bertha	51.55 14	12.10 2	-	6b+2a+2r	6b+2a+2r
		Polly			-	1b+1a	1b+1a
		Polly-XT			-	-	3b+2a
Linköning	SE	FOI UV Lidar	58.392 N	15.575 E	1b	2h+2a	2b+2a
Lisbon	PT		37 N	8.5 W	1b	-	-
Liubliana	SI		46.0 N	14.5 F	1b	-	-
Madrid	FS	LIDAR-CIEMAT	40.456 N	3.726 W	-	1b+1a	1b+1a
Maisach	DE	POLIS	48.209 N	11.258 F	-	1b+1a	1b+1a
Minsk	BY	MSTL-2	53.917 N	27.383 E	2h	4b+1a	4b+2a
München	DE	MULTS	48.15 N	11.57 E	3h	3b+2a	3b+2a
Napoli	IT	HOLIO	40.833 N	14.183 F	1b	3b+2a	2b+2a
Ness-Ziona	TI	IIBR	31.55 N	34 47 F	-	-	2b 1 2u
Neuchatel	CH	MAL-ground	47.001 N	6.955 E	3h	1b	1b
Oxylithos	GR	FOLE-OXY	38.55 N	24.13 E	-	-	-
Palaiseau	FR		48.42 N	2.16 F	2h	2h	-
lalaiseau		AI \$450	40.42 1	2.10 L	-	_	1b
Paverne	СН	RALMO	46 812 N	6 943 F	-	-	1b+1a
Potenza	IT	PEARI	40.6 N	15 733 F	2b+1a	3h+2a	3b+2a
000120		MUSA	10.0 1	13.735 L	-	-	3h+2a
Saint-Michel (HP)	FR	ITA-LOR	43 935 N	5 712 E	-	1b+1a	1b+1a
Sofia	BU	Sofia-EARLINET station IE	42 65 N	24 38 F	2h	3b+1a	3b+1a
Thessaloniki	GR		40 5N	22.9 F	1b	3h	2h+2a
Thessulottiki	011	Nom	10.51	22.7 L	110	55	20120

Network Development

2nd GALION W\$

WMO, Geneva

SIXTH FRAMEWORK

25

Organiza

EARLINET

Network Development

2nd GALION W\$

WMO, Geneva

SIXTH FRAMEWORK

20 Sept. 2010

Network Development

2nd GALION W\$

WMO, Geneva

FRAMEWORK

20 Sept. 2010

Conclusions

- Tools exist for keeping track of the development and quality of the installed base of instruments in the network
- Recommendations and techniques for network participants and aspiring partners available
- Improvement of tools and repository of recommendations is ongoing
- Commercial systems are becoming part of the network
- Network has expanded and performance in terms of network objectives has increased

