

FOREST FIRE AEROSOLS Optical and microphysical properties from EARLINET observations

D. Balis

Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

Contributions from

E. Giannakaki (AUTH), V. Amiridis (NOA), A. Papayannis, R. Mamouri (NTUA), I. Mattis, D. Mueller (IfT), L. Mona (CNR-IMAA)

Outline

- Fire sources affecting Europe
- Tools for smoke identification
- >Optical properties for smoke from EARLINET observations
- Microphysical retrievals for smoke within EARLINET
- Effects of ageing of smoke plume
- > Summary

Systematic sources affecting Europe

In Europe + forest 70 agriculture wetlands △ grasslands 60 Latitude (degrees) other 50 Thessaloniki 30 -20 Ø 20 40 60 Longitude (degrees)

In N. America

Regional scale example (August 2007)

Tools for identification of fire sources and the possibility of advection over a lidar station

Emission sensitivity obtained from 20-day backward simulations with FLEXPART

MODIS rapid response system

World Fire Atlas (ATSR)

HYSPLIT-backtrajectories

Optical properties for smoke from EARLINET observations

Thessaloniki, 9 August 2001

Smoke originating mainly from Russia's Agricultural District and other regional sources

Example of 3+2 lidar retrievals of extinction and backscatter for a smoke case study (Mueller et al., 2004)

Canadian fires detected over Leipzig June 2003

GALION workshop, Geneva 20-9-2010

Possible intrusion of forest fires particles coming from East Mediterranean region.

It is also possible a mixture with forest fires particles coming from North US –Canada

Detection very close to the source

Athens 27-30 August 2007

Ab [uv-vis] 1064nm Aa [uv-vis] 532nm 355nm ALTITUDE A.S.L. [m] 1.27 ± 0.33 0.49 ± 0.43 AOT355=1.04 AOT532=0.78 83 ± 11 95 ± 16 -1 EXTICNCTION COEFFICIENT [Mm] BACKSCATTER COEFFICIENT [Mm⁻¹sr⁻¹] LIDAR RATIO [sr] ANGSTROEM EXPONENT

27 AUGUST 2007 22:07- 00:30 UTC

Wide range of optical properties for 10 smoke cases (identified with FLEXPART) over Thessaloniki (Amiridis et al., 2009)

Microphysical retrievals for smoke within EARLINET

Muller et al. JGR, 2005

Balis et al., JGR, 2010

Variation of microphysical properties for smoke cases studied within EARLINET

The wide range of the values could be attributed on **the source type** or on **ageing** of the source plumes

Mueller et al. personal communication)

Possible differences in optical and microphysical properties due to the source?

Date	Region	Lidar Ratio	SSA	Aerosol Index	AOD @ 355nm	Ångstrom exponent	Color Index
12 Jul 2001	RAD	95	-	0.27	-	-	0.61
16 Jul 2001	RAD	75	0.96	-0.35	0.85	1.6	1.26
09 Aug 2001	RAD	57	-	0.86	1.52	1.3	1.33
16 Aug 2001	RAD	87	0.95	-0.53	0.62	1.3	1.29
20 Aug 2001	RAD	67	0.95	0.49	0.99	1.43	0.29
08 Jul 2002	RAD	72	0.99	0.29	0.51	1.1	0.26
22 Aug 2002	Portugal	46	-	-0.18	0.52	2.2	2.12
28 Jul 2005	RAD	55	0.98	-0.78	0.93	1.3	1.82
01 Aug 2005	RAD	85	0.95	-0.3	0.85	1.5	1.26
12 Sep 2005	Portugal	58	0.96	-1.51	0.7	1.2	1.57

Region	Lidar Ratio	SSA	AOD	Ångstrom	Color Index
RAD	74 ± 14	0.96 ± 0.01	$\textbf{0.89} \pm \textbf{0.32}$	1.36 ± 0.16	1.26 ± 0.36
Portugal	52 ± 8	0.96	0.61 ± 0.12	1.7 ± 0.7	$\textbf{1.84} \pm \textbf{0.38}$

Smoke plumes can travel for many days in the free troposphere (e.g. Damoah et al. ACP, 2004)

Simulated total CO columns (ECMWF and GFS)

For the same source (e.g. Eastern Europe). The age of the travelling smoke plume should be the reason for the wide range of values.

Use of CO age from FLEXPART to estimate the age of the smoke plume.

Model calculations were performed considering CO emissions only from fire hotspots detected by ATSR.

Vertical mean values of the backscatter related Ångström exponent calculated from the backscatter coefficients at 355 and 532 nm versus vertical mean values of the lidar ratio at 355 nm, calculated *for the same height ranges of smoke presence*

Vertical mean values of the backscatter related Ångström exponent calculated from the backscatter coefficients at 355 and 532 nm versus weighted mean age of the carbon monoxide tracer, calculated for height ranges of smoke presence

Mueller et al., JGR 2007

Summary

- EARLINET stations are systematically affected by forest fires (Russia, Siberia, N. Canada, Portugal, regional ones)
- Smoke plumes can travel for many days in the free troposphere and can result to very high optical depths and extinction coefficients (1.7 and 400 Mm⁻¹ respectively)
- Estimated optical and microphysical properties for smoke show a wide range of values (lr355=30-90 sr, lr532=40-100sr, lr355/lr532<1,

 $Å_{a(355/532)}$ =0.5-1.5, r_{eff} =0.2-0.4 µm, ssa: the majority of cases 0.9-0.95)

• The ageing of the smoke plume and/or different source type can explain part of the observed variability

Thank you for your attention!