WHY

This poster is a powerful demonstration as to the value of global monitoring - from surface sites. Well calibrated robots (under the umbrella of AERONET) measure atmospheric radiation under cloud free conditions. This permits a complete definition of all aerosol (column) properties: optical depth, size-distribution and absorption. Applications include evaluations of a-priori assumptions in satellite retrievals or ways to link surface and column data. Here, AERONET data in conjunction with satellite patterns set constraints to simulated aerosol properties and forcing.

Seasonal Aerosol Properties and Forcing A global view based on AERONET statistics

Stefan Kinne (1) and AERONET-group (2) (1) Max-Planck Institute for Meteorology, Hamburg (2) NASA Goddard Space Flight Center, Greenbel

AERONET

a worldwide network of robotic sun/sky photometers

- supervised at NASA-Goddard [Holben, Eck, Smirnov, Tanre, Dubovik]
- retrieved visible properties up to 1/hour (sky-scanning mode) : aerosol optical depth (regionally corrected with MODIS data)
 - aerosol absorption (refractive indices)
 ⇒ single scattering albedo
 - aerosol size-distribution (22 size-bins) ⇒ effective radius (vol/sur)
 - water vapor column (from direct attenuations at 0.94um wavelength)

Seasonal Averages

Statistics of 100 AERONET sites are displayed as seasonal averages

DJF December, January, February

- MAM March, April, May
- JJA: SON: June, July, August September, October, November

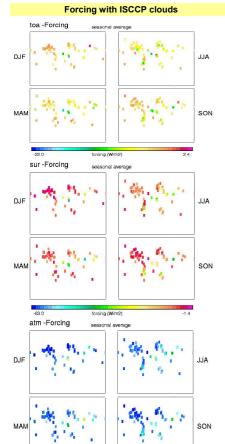
- results are displayed in identical sized frames The Earth's View

Retrieved Properties

Aerosol optical depth (upper left)

regionally adjusted with MODIS retrievals Aerosol absorption (upper right)

product of optical depth and co- single scattering albedo Atmospheric water vapor (middle left)


based on direct attenuation in the .94 μm water band Aerosol single scattering albedo (middle right)

low values at low opt.depth (<0.3) cloud be misleading

Aerosol mass (lower right)

wet' aerosol mass based on retrieved size-distribution Aerosol effective radius (lower right)

volume to surface area ratio of retrieved size-distributions (note: black squares in figure exceed the maximum on the given [linear] scale)

What is aerosol forcing?

The resulting difference to the atmospheric energy balance from [simulations with aerosol] minus [simulations without aerosol]

What data were used?

- apply AERONET data to prescribe the aerosol properties
- apply MODIS retrievals (at diff. scales) to remove local character apply MODIS based solar surface albedos (visible and near-IR)
 - apply cloud statistics (ISCCP) high/mid/low cloud-cover (optional)

What quantities were calculated?

- net-flux changes (W/m2) at top of atmosphere ('climate' effect)
- net-flux changes (W/m2) at the surface (⇔ surface processes)
- net-flux changes (W/m2) in the atmosphere (⇔ atm. dynamics)

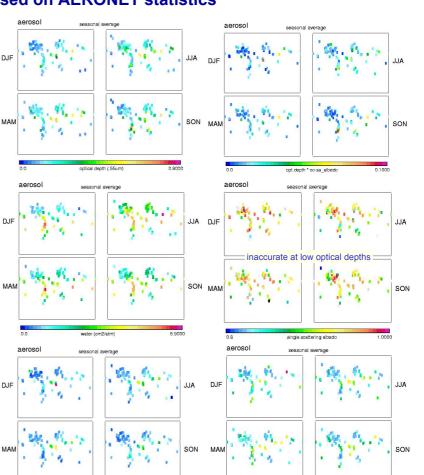
Take Home Message

AERONET inversions define all aerosol properties many comparisons to other methods possible

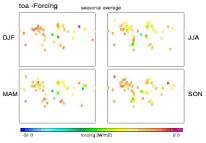
for example aerosol optical depth (yearly averages) ⇔

AERONET statistics combined with satellite data Models EC - ECHAM4 (GCM)

- can extend local statistics to regional averages
- can permit regional forcing estimates (surf.albedo)


Aerosol Direct FORCING is influenced by

- (length of day / sun-elevation) Incation • underlying surface (e.g. water vs. clouds or ice)
- aerosol concentration and (size and composition) aerosol type


with these particular aerosol type tendencies...

biomass: less likely to cool (ToA), strong atmos. heating dust: more likely to cool (ToA), weak atmos. heating atmospheric heating increases with pollution urban:

... many detected forcing results are better understood clouds: reduce forcing (to about 2/3 of clear-sky value)

Forcing without clouds

		AVERAGE	madels and data	
ge	EC	- 747		Ko
rly averages) 🗢	Gr			4٥
Models EC - ECHAM4 (GCM) GR - Grantour (GCM) NC - NCAR (GC/TM)	NĈ			Ág
GO - GOCART (CTM) CC - CCSR (CTM) GI - GISS (GCM)	GO			To
<u>Satellites/Ground</u> Mo - MODIS (.55μm) A,n - AVHRR (.63μm)	CC	**	<	Po
A,g - AVHRR (.55μm) To - TOMS (.55 μm) Po - POLDER (.87μm) Aer - Aeronet (.55μm)	GI	-	- N. C	Aer
<u>note</u> : all data are shown refer to .55µm wavelengt	۱	0,0 ae	erasol aptical depth (.55um)	0,8000

Forcing